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Abstract-Some ceramic materials for high temperature applications are partially transparent for radiative 
transfer. The refractive indices of these materials can be substantially greater than one which influences 
internal radiative emission and reflections. Heat transfer behavior of single and laminated layers has been 
obtained in the literature by numerical solutions of the radiative transfer equations coupled with heat 
conduction and heating at the boundaries by convection and radiation. Two&x and diffusion methods 
are investigated here to obtain approximate solutions using a simpler formulation than required for exact 
numerical solutions. Isotropic scattering is included. The two-flux method for a single layer yields excellent 
results for gray and two band spectral calculations. The diffusion method yields a good approximation for 
spectral behavior in ~dminated multiple layers if the overah optical thickness is larger than about ten. A 
hybrid spectral model is developed using the two-flux method in the optically thin bands, and radiative 

diffusion in bands that are optically thick. 

INTRODUCTION 

SOME OF the ceramic materials being developed and 
evaluated for high temperature applications are par- 
tially transparent to radiant energy. For high tem- 
perature conditions such as in a combustion chamber, 
infrared and visible radiation from the surroundings 
penetrates inro the material heating it internally. Since 
temperatures in the material are elevated, internal 
radiant emission becomes significant ; this is especially 
true for materials with high refractive indices since 
internal emission depends on the refractive index 
squared. In addition to emission, energy transfer 
within the material depends on internal radiant 
absorption and scattering, and on heat conduction. 
As a result, radiant energy can affect internal tem- 
peratures of some ceramic engine parts and coatings 
that partially transmit radiation in portions of the 
wavelength spectrum. It must be determined when 
radiative processes can be important, and how large 
an effect they have when compared with calculations 
when materials are assumed opaque. 

The refractive indices of single or composite 
materials can have a considerable effect. Surface 
reflections depend on the ratio of refractive indices 
across an interface ; this affects the amount of external 
radiation transmitted into a material, and the amount 
reflected from internal interfaces in a composite. Since 
emission in a material depends on its refractive index 
squared, internal emission can be many times that 
from a blackbody radiating into a vacuum. So that 
radiation leaving through an interface does not exceed 
that of a blackbody, there is substantial energy reflec- 
tion at the internal surface of the interface, mostly by 

total internal reflection. Scattering is another means 
for energy transfer in the layer; it interacts with the 
internally reflected energy and alters the temperature 
distribution. 

There is an extensive literature on radiative transfer 
in plane layers. Much of the work has been for gases 
with refractive indices of one although some of the 
early work for predicting heat treating and cooling of 
glass plates [I] included refractive index effects. The 
literature has been briefly reviewed in our previous 
work [24] and is not repeated here. In refs. [2-4] 
temperature distributions and heat flows in partially 
transmitting materials are predicted by radiative 
analyses using the transfer equations coupled with 
heat conduction. The governing integral equations are 
solved numerically. Each exterior boundary is heated 
by radiation and convection, and the effect of diffuse 
interface reflections is included. Results were obtained 
for a single layer that is either gray or has a two- or 
three-band spectral variation of the absorption 
coefficient, and for a gray two-layer composite. This 
simulates a ceramic layer with reinforcement by 
another material, and also examines the behavior of 
a ceramic coating used to protect another ceramic. 
Various amounts of isotropic scattering are included 
to simulate internal reflections by a granular or rein- 
forcing structure. 

The formulation and solution of the exact spectral 
equations of radiative transfer including scattering is 
rather complicated; hence it is desirable to have more 
convenient approximate methods if these will yield 
accurate results. Two-tlux, diffusion, and hybrid 
methods are investigated here to provide a simplified 
formulation for obtaining approximate solutions. The 
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a absorption coefficient of material in layer 

W’l 
CO velocity of radiant propagation in 

vacuum [m s- ‘1 
C, constant in blackbody spectral flux 

[W m3 sr -‘I 
constant in blackbody spectral flux 
[m Kl 

D 

evb 

FS 

GS, GL values of G in bands at small and 

G 

integration constant in energy equation 

[W n-.-‘1; CON = CONjDaTi, 

thicknesses of plane layer [m] 
blackbody spectral flux [W m-‘1 
blackbody fraction in band at small 
frequencies 
flux quantity defined in equation (la) 
[W m-‘1; c” = G/oT$ 

NOMENCLATURE 

H 

h,, h, 

k 

K 

N 

n 

q 

4+> 4 

q, 

YP 

large frequencies 
dimensionless convection-radiation 
parameter, h/CT:, 

convective heat transfer coefficients at 
two boundaries of layer [W rn-’ K-‘1 
thermal conductivity of layer 
pN m-’ K-‘1 
extinction coefficient of layer, a + 6, [m-‘1 
conduction-radiation parameter, 
k/aT;,D 
refractive index of layer 
heat flux [W mm’] ; 4 = q/crTi, 

QS, yL radiative flux in spectral bands with 

radiative heat fluxes in positive and 
negative x directions [W m -‘I 
radiative heat flux in layer [W m-‘I; 

y”, = MT;, 
externally incident radiation flux 
[W m-‘1; 4°F = q,“/aT,“, 

_ _ 
small and large frequencies 

R(n) function of refractive index defined in 
equation (22) 

T absolute temperature [K] 

t dimensionless temperature, T/T,, 

T,,, Tgz gas temperatures on two sides of 
layer [K] 

x coordinate in layer [m] ; X = x/D 

Greek symbols 
optical coordinate of layer K x 

optical thickness, K D 

frequency of radiation [s- ‘1 
reflectivity of interface for internally or 
externally incident radiation 
Stefan-Boltzmann constant [wm-‘K-“1 
scattering coefficient of layer [m-‘1 
scattering albedo of layer, 
a,I(a+a,) = c,/K. 

Subscripts 
b 
C 

D 

f, s 

g 
h, s 

j 
m 

i,L 

tot 

V 

1,J 

1, 2 

blackbody 
value at cutoff frequency 
based on the length D 

first and second internal interfaces of a 
layer, Fig. 2 
gas on either side of laminated layer 
higher and smaller refractive indices 
index indicating jth layer in a composite 
the mth frequency band 
radiative quantity 
spectral bands with small and large 
frequencies 
total heat flux by conduction and 
radiation 
frequency dependent quantity 
the first and final layers in a composite of 
J layers 
quantities at sides x = 0 and D. 

Superscripts 
i, 0 quantity incident from inside or outside 
+, - flux in positive or negative x’ direction. 

two-flux equations are given in refs. [.5, 61, and the 
method is shown in refs. [7, 81 to give accurate results 
for gray plane layers with a refractive index of one. 
The method is extended here to include refractive 
indices larger than one, and for heating conditions 
such that the boundary temperatures are not specified 
and are found during the solution. The two-flux 
method is found to be convenient for layers of mod- 
erate optical thickness ; it yields excellent results for 
gray and two band spectral calculations in single lay- 
ers with or without isotropic scattering. 

The diffusion method is extended here to spectral 
calculations in a multilayered composite where each 
layer can have a different refractive index. It yields a 
very good approximation for spectral heat transfer 

characteristics in single and multiple layers if the over- 
all optical thickness is larger than about ten. 

A hybrid spectral model is developed that uses the 
two-flux method in optically thin spectral bands and 
the diffusion method in bands that are optically thick. 
This also provides good agreement with exact numeri- 
cal solutions. When an optically thick band is present, 
convergence of the iterative solution method is 
improved compared with the two-flux method. 

ANALYSIS 

The two-flux approximation for spectral radiative 
transfer 

A plane layer of absorbing, emitting, and iso- 
tropically scattering material is subjected on both 
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T(x) 

x=0 x=D 

FIG. 1. Geometry, coordinate system, and nomenclature for 
radiative fluxes in the two-flux model for heat transfer in an 
absorbing, emitting, and scattering semitransparent layer. 

boundaries to convection and incident radiation as 
shown in Fig. 1. The two-flux method is used to obtain 
the layer temperature distribution and the heat flux 
transferred through the layer. The results are com- 
pared with exact numerical solutions of the radiative 
transfer equations to determine the accuracy of the 
two-flux method for a layer with a refractive index 
greater than one. The boundaries are assumed diffuse. 
The two flux equations are obtained from the radiative 
transfer equations as shown in refs. [5, 6 pp. 772, 
7851, and are given by either the MiJne-Eddington or 
the Schuster-SchwarzschiJd approximations. These give 
the same functional relations, but differ by a numerical 
coefficient in the radiative flux relation. The Milne- 
Eddington approximation is used here. 

The two-flux equations. The two fluxes are in the 
positive and negative directions as shown in Fig. 1; 
they are each assumed isotropic and the equations 
are written spectrally in terms of frequency. A flux 
quantity G,, and the net spectral radiative fJux qVr are 
related to the two directional fluxes by the spectral 
relations, 

G,.=2(gZ+-q,); gW=q;:-q;. (la&) 

Equations (1 a) and (1 b) can be solved for the positive 
and negative spectral Auxes in terms of G, and q,,; 
these relations will be used in the analytical devel- 
opment, 

The two-flux equations including scattering are given 
in ref. [S] as, 

& gdv = (1 -n,,)[4e~~(x>dv-G,(x)dv] (3) 
/ * 

(4) 

The blackbody spectral flux in equation (3) contains 
the square of the refractive index and is given by 

2nnzC,v3 
e,,(v,T) dv = 4c V,r r co(e 2 ’ 0 -1) 

dv. (5) 

A third relation, in addition to equations (3) and 
(4), is the energy equation. For the present conditions 
of steady state without internal heat sources, the total 
heat flow through the layer is a constant. It is given 
by the sum of conduction and radiation heat flows so 
the energy equation is 16, p. 69.51, 

The three equations (3), (4) and (6), subject to proper 
boundary conditions, are to be solved for q&x), G(x) 
and T(X). 

Equation (4) is integrated over all v and the integral 
of qVr over v is eliminated by using equation (6). The 
resulting equation is integrated over x to yield 

dvt CON (7) 

where CON is an integration constant. Evaluating 
equation (7) at x = 0 and D reIates the boundary 
values of T and G to the values of qtol and CON 

CON= kT(O)+ ; o -z-dv 
s 

r‘ G,(O) 

Y 
(8) 

dv + CON. (9) 

Equation (3) integrated with respect to x will be used 
later in the form, 

x 
s 

’ [4e,,(x) dv - G,,(x) dv] dx ( J 0) 
0 

where evb is a function of x as it depends on the local 

T(x). 
Boundary conditions. The boundary conditions are 

now developed. The total energy flow within the layer 
is by radiation and conduction. Because radiant 
absorption in the two-flux method is a volume 
process, there is no absorption at a boundary surface 
since the surface does not have any volume. Hence at 
each boundary the external convection is balanced 
only by internal heat conduction. The total energy 
flow by radiation and conduction within the layer 
is constant across the layer; the qtO, can then be ex- 
pressed at the boundaries as the sum of external 
convection (which is equal to internal conduction) 
and internal radiation. This yields at .X = 0 and D. 

(lla) 
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qtot = W-(D) - T,,l + ‘q,.,(D) dv. 
s 

(11 b) 
0 

At each boundary the internal radiative flux leaving 
the boundary is equal to the sum of transmitted exter- 
nally incident flux and reflected internally incident 
flux. This yields the relations at x = 0 and D, 

q:(o) = qx 1 -P”) +q,,,(O)p’ 

Y,.,(D) = qx 1 -p”) + q:(D)@. 

(124 

(12b) 

Equations (2a,b) are used to eliminate the qz and 
ql,r from equations (12a,b) to obtain expressions for 
G,.(O) and G,.(D) in terms of the radiative fluxes q,,(O) 
and q,.,(D). 

G,(O) = 4 :zf qFr, - 2 :“$ q,,,(o) (13a) 

G,.(D) = 4I~q”,,+2:t~q.,(n). (13b) 

By using equations (8) and (11 a), and equations (9) 
and (11 b), the T(0) and T(D) are eliminated and the 
following relations are obtained by solving the two 
remaining equations for the integration constant 

’ (14) 
1 

Equations in dimensionless ,fbrm ,for a gray layer. 
The equations for multiple spectral bands follow quite 
readily from the preceeding relations and from 
relations for a gray layer (one spectral band). The gray 
relations are now given in dimensionless form using 

quantities defined in the Nomenclature. 

Two-flux equations : 

qr(X) = 4r(0)+~,,(l -Q) 
s 

‘[4n’fJ(X)-G(X)]dX 
0 

(16) 

s Y 

&k’) = G(0)-3~ &(X)dX. (17) 
0 

Energy equation : 

t(x) = ; - ;;’ -&,X+C6N L - D 1 

Equations for c”(0) and G(D) : 

Equations for CdN and &,, : 

(18) 

(19a) 

(19b) 

+[I + $.(O)-&(l)) (20) 

410, = +y”,(o). (21) 

Solution procedure by iteration ,for a gray layer. 
An iterative solution procedure was used by guessing 
values of the dimensionless boundary temperatures 
t(O) and l(l). The boundary relations given by equa- 
tions (19a,b), (18) at X= 0 and 1, and (lla,b) in 
dimensionless form for a gray layer, are solved sim- 
ultaneously to find starting values for 4JO) and j,(l) 

and L. A d,(X) distribution passing through the 
end values and through q,,, at X = l/2 was used 
as an approximation to start the iteration. Using 
G”(0) and c(l) calculated from equations (19a,b) 
the trial g,(X) is normalized such that the condition 
3rc,,~~~,(X)dX = &0)-G”(l) from equation (17) is 
satisfied. The G(X) is then obtained from equation 
(17) and CaN and q,,, arc found from equations (20) 
and (21). The t(X) is evaluated from equation (18) 
and a new qr(X) is obtained from equation (16). To 
begin a new iteration a damping factor is applied 
between the new and old q,(X) to keep the iterative 
method stable. A small damping factor was needed 
such as 0.0005 when the optical thickness is about 10 
and there is no scattering. Solutions with scattering 
required less damping. Computing time for a solution 
converged to a maximum error on &(X) of 5 x IO- ’ 
depends on the integration method used in equations 
(16) and (17). Solutions using a trapezoidal rule took 
seconds on a VAX computer. A Gaussian routine 
took from seconds to minutes depending on the 
optical properties and gave comparable results to the 
trapezoidal rule. 

The surface reflection characteristics were modeled 
by using integrated averages of the Fresnel reflection 
relations. For diffuse incident radiation this gives [6, 

p. 1151, 
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1 
p(n) = R(n) = 2 + 

(3n+ l)(n- 1) 

6(n+ l)2 

quencies. The KS(X) is the fraction of blackbody 
energy in the short frequency range corresponding to 
the temperature t(X)T,,. 

2n”(laZ+2n-1) &P(n‘+ + 1) 
-_i- (72 + I)(n”- I) + (n2+ l)(nJ- 1)’ 

x In (n) (n = n&r,). (22) 

Equation (22) is for reflection of radiation incident on 
a material of higher refractive index where n,, and n, 
are the ‘higher’ and ‘smaller’ n values (the incident 
radiation is from within the material with n,). After 
allowing for energy incident at angles larger than the 
critical angle for total reflection, the p(n) for diffuse 
radiation going in the direction from a higher to a 
smaller refractive index material is found from [9], 

The solution by iteration is similar to that outlined 
for a gray layer except there are now two C&(X), one for 
each spectral band. The iteration begins by estimating 
@S,(X) and (IL,(X) by taking into account that C&(X) 
tends to be small in a band where K,, is large and that 
the radiative energy distribution in the bands shifts to 
smaller v as r(X) decreases. 

The d@usion approximation for optically thick spectral 
layers 

When the optical thickness of a layer is large the 
radiative diffusion method is very useful for making 
predictions using spectrally dependent properties. 
Since the diffusion method yields equations that are 
convenient to evaluate, the method is extended here 
from a single layer to a multilayer laminated com- 
posite of J layers as shown in Fig. 2. From ref. 16, p. 
7531, the radiative flux by diffusion in any of the layers 
is given by dq,,, = -(4/3K,) (de,,/dx)dv. To obtain 
the radiative heat flux including all frequencies this is 
integrated over all v to give 

(28) 

1 
p(n) = 1 - - [1 - R(n)] 

rl2 
(n = n,/n,). (23) 

Two-flux methodfor a two-band spectral calculation. 
A two-band calculation is used to illustrate a spectral 
application of the two-flux method. The letters S 
and L designate the ranges with small and large fre- 
quencies. Then for a quantity such as G,(O) the 4 d 

band notation is used that GS(0) = jz G,(O) dv and s 

a erb 
pdv. 

“=-3dx ,, KU 

CL(O) = fs G,(O) dv. For a two-band calculation each 
of equations (19) has two parts, one for each frequency 
range. For example, using equation (19a) gives for 
G(0) in the small and large frequency ranges, 

&g(O) =: 4p”gS;,-2’+P’- 
1 -p’ l-p’ @LO) (24a) 

(29) 

CL(O) = 4 
l-p” 
y&C;, -27 
1-P 

; ‘;: &L.,(O). (24b) 

Similar relations are written from equation (19b) for 
GS( 1) and GL(l). Equation (21) for c?,,, now contains pm+ , 

a contribution from each of the two bands, J e,,,(v) dv = nZoT4[F(v,+ JcJ)- F(v,/co7’)]. 
r,n 

For integrating over all v it is convenient to use mul- 
tiple spectral bands where K,. = Km in the mth band 
and there is a total of M bands. Then with each band 
extending from v, to v,+ , where 1 < I?Z ,< M. 

The quantity in the integral can be expressed in terms 
of the blackbody fraction F(v/cJ), 

(30) 

The total energy transfer by radiation and con- 

+ P,(O) + C%(O). (25) duction is then given by, 

This also occurs in the temperature relation equation 

(I@> 
4 t0, = - kg+; i :_ 

M-I nr 

(26) Since qrol is a constant through the composite layer 

Equation (16) for the radiative flux is written for each equation (31) can be integrated from 0 to x, in thejth 

band. For the band with short frequencies, layer. The result is placed in dimensionless form using 
the quantities defined in the Nomenclature to yield, 

@LX) = 4&(O) f %s(l -Q,) 

x 
s 

’ [4n2t4(X)FS(X) - &Y(X)] dX (27) 
4,0,X, = N,[t,, - tj(Xj)] + $ 

0 M 

and similarly for &C+(X) in the band with large fre- 



408 R. SIEGEL and C. M. SPUCKLER 

A 

Layer: 1 2 . . . j . 

nlv al, us1 “1, q. 0%~ 

*x 
hs T,I - Xl - XI 

+DI -* - "I - 

A 
x,=0 x, =D, XJ xJ=D 

FIG. 2. Laminated multilayered geometry showing coordinate system and nomenclature designating 
interfaces and their temperatures for use in spectral diffusion method for single or multiple layered 

composites. 

-m~m/~“~,(X,)~gIl)l (32) 

where t,,, = t, (X, = 0) is at the first interface in thejth 
layer (see Fig. 2). 

Equation (32) is evaluated at X, = I which gives an 
expression for the temperature difference across the 
,jth layer in terms of &,,. To join two layers a con- 
tinuous temperature is assumed at the internal inter- 
face between them. The temperature jump that occurs 
in some instances at an interface when using the 
diffusion approximation is neglected at the bound- 
aries. The jump is small when the layers are optically 
thick and when conduction is comparable to radiation 
[IO]. The convective and radiative balance at each 
outside boundary, and the conduction with radiative 

diffusion relation for Q,,,, equation (32) written for 
the temperature difference across each of the J layers, 
provide the following simultaneous equations : 

Hybrid method using the two-jux method ,for thin 

bands and the d$iision methodfor thick bands 
The hybrid energy equation. In the numerical solu- 

tions using the two-flux method, convergence was 
found more difficult for a layer with optical thickness 
larger than about 20. To analyze spectral cases with 
both optically thin and thick bands, a hybrid method 
was devised. For optically thin bands the two-flux 
method is used, while the diffusion method is used for 
thick bands. For simplicity a two-band model is given 
here where the optically thick region is for 0 < v < v, 
so that rcDS > acne. The total flux by conduction and 
radiation is 

Y ,ot= -k~~+~~,,q,,,dv+~~q,,dv. (34) 

Using the diffusion relation from equation (28) for 
the 1st integral and the two-flux relation, equation (4), 
for the 2nd integral gives 

H,(l -t,.r)+(l -~;,~)n:[qF, -t;lrl-&nl = 0 (33a) 

G,(x) dv. (35) 

By integrating equation (35) and putting it in dimen- 

Wb) sionless form the temperature distribution becomes 

H2(rJ.q - t,d + (1 - L&~(t~.s- 84 -b = 0. 

(33c) 
t(X) = ; - $ t(X)“FS[t(X)] 

“S 

These equations are solved for the two external GL(W _ 
boundary temperatures t,,r and t,,,, the internal inter- 

-q,,,X+C%N 
3%, 

(36) 

face temperatures, and the heat flow 4,,, through the 
composite layer. After Q,,, is obtained, the temperature as compared with equation (26) using the two flux 
distribution in each layer (1 < j < J) is calculated by method for both spectral bands. Since t(X) in equation 
solving equation (32) numerically for t,(X,). (36) is in the blackbody fraction FS[t(X)], a numerical 
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method such as a root solver is used to find the dis- 
tribution t(X). 

Boundary conditions. For the diffusion approxi- 
mation, external radiative energy in the optically thick 
band is absorbed and emitted at the boundary surface 
at x = 0. The net external energy that is absorbed, 
combined with the external convection, is equal at the 
boundary to the internal heat conduction combined 
with the internal radiative diffusion {which acts like 
conduction) in the optically thick band (small v). The 
total internal heat flow at the boundary can then be 
expressed as this net external energy (absorbed radi- 
ation and convection) added to the internal radiation 
in the optically thin band (large v) which is obtained 
from the two-flux method, 

410l = - (1 -p”)(qS~--aT(D)4~~[T(D)l) 

+ h&‘-(D) - 7’,,1+ @r(D). (37b) 

From equation (36) in dimensional form evaluated 
at x = 0 and D, 

CON = /CT(O)+ & T(o)4FS[T(0)l+ $ Gwa 
s I_ 

(384 
CON k 

(Itot = p-,T(D) 
D 

- j& W)4NUD)1- 
s 

& GL(D). (38b) 
L 

Combine equations (37a) and (38a) to eliminate the 
T(0) term, and combine equations (37b) and (38b) to 
eliminate the T(D) term. Then eliminate qtet from the 
resulting two equations. This yields the equation for 
CON in dimensionless form (as in equation (20)) as 

x w:, - m4w@)llj --@r(1) + t 1 --PI 

x [BS~*-t(l)4FS[t(l)ll). (39) 

The (I,,, can be obtained from from either equation 
(37) or (38b). 

Solution method. The iterative solution starts by 
assuming &!,(A’). t(0) and t(D). The &5(O) is found 
from equation (24b) and similarly for eL(l). The 

@L,(X) is normalized according to the two-flux equa- 
tion (17) so that 3tcDLfA&(X)dX = &(O)-G”L(l). 
Then GL(X) is found from equation (17) as 

G&Y) = GL(O)- 31~~~ 
s 

‘@L&Y) dX. (40) 
0 

The CdiV is obtained from equation (39). and @tot 
from equations (37) or (38b). The t(X) is then obtained 
from equation (36), and a new g&(X) is computed 
from the two-flux equation (27) written for the large 
v band. To start the next iteration a damping factor 
is applied between this &5,(X) and the q”&(X) that was 
used to start the iteration. 

RESULTS AND DISCUSSION 

Two-flux r~suits~or a gray layer 
The most basic application of the two-flux method 

is for a gray layer. Two-flux results are given in refs. 
[7,8] for a layer with a refractive index n = 1 between 
two black walls at specified temperatures. Excellent 
agreement was obtained with numerical solutions in 
the literature of the exact radiative transfer equations. 
In the present work the boundary temperatures are 
unknown and are obtained in the solution as a result 
of specified convection and incident radiation con- 
ditions at the boundaries. The present results show 
the effect of having a refractive index as large as n = 4 
and the effect of isotropic scattering with an albedo 
of n = 0.9. 

Figure 3 is for n = 2, and Fig. 3(a) is without scat- 
tering. The ‘exact’ numerical results were obtained 
in refs. [2, 31 where the behavior of the temperature 
distributions was discussed. The two-flux method 
yields excellent predictions of the temperature dis- 
tributions and the results follow the pronounced tem- 
perature curvature near the boundaries. There are 
only small deviations from the exact solution ; the 
largest deviations are for K~ = 1 where radiation has 
a large effect since the layer is neither optically thin or 
thick. The total heat ffux through the layer by com- 
bined radiation and conduction is predicted very well 
by the two-flux method as shown on the figure. 

The effect of large scattering, &I = 0.9, in Fig. 3(b) 
is for the same n and K~ values as in Fig. 3(a). For 
the same Q, a layer with R = 0.9 has 10% of the 
absorption as for Q = 0. For these conditions the two- 
flux relations provide excellent predictions for all ICY 
of both the tem~rature dist~bution and total energy 
transfer through the layer. 

When the refractive index is increased ton = 4, with 
all other parameters kept the same as in Figs. 3(a),(b), 
the results are in Figs. 4(a),(b). The exact numerical 
solutions are again obtained from refs. [2,3]. The tem- 
perature profiles are more uniform in the central por- 
tion of the layer as discussed in refs. [2, 31 which leads 
to large temperature variations near the boundaries, 
The two-flux method is successful in predicting both 
the details of the temperature distributions and total 
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I / ’ I I 

Refractive 

index, n=4 
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\ 
thickness, ‘cg 
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FIG. 3. Comparisons of two-flux results with exact numerical FIG. 4. Comparisons of two-fux results with exact numerical 
solutions of radiative transfer equations without and with solutions of radiative transfer equations without and with 
scattering in a gray layer with refractive index n = 2; &‘, scattering in a gray layer with refractive index )I :m 4: CT:‘, 
= I, &‘? = 0.254, t,, = I. fg2 = 0.25, H, = Hz = I. N = 0.1. = I, 4;? = 0.25”, t,, = I, I,, = 0.25. H, = H1 = I. iY = 0.1. 

(a) Scattering albedo. R = 0. (b) Scattering albedo. R = 0.9. (a) Scattering albedo. Q = 0. (b) Scattering albedo. Q = 0.9. 

heat flux transferred by combined radiation and con- 

duction. 

temperature profiles in Fig. 5(a), o,D = 0.9 or 
o,lI = 9.9. Thus for the two curves the spectral optical 
thicknesses are. respectively, IC,)~ = 10.9, xlIL = I, and 
K,)S = 19.9, KDL = IO. As shown the two-flux method 

applied spectrally. as developed in the analysis, pro- 
vides excellent agreement with the two-band numcri- 
cal solutions in ref. [3]. 

In Fig. 5(b) the a,,D values are increased to 100 and 
1 for the bands with small and large frequencies. and 
the gray scattering component is cr,D = 9. The spectral 
optical thicknesses are then K,,~ = 109 and K~),_ = IO. 

T~YJ$L~ resultsjiv a luyer with two absorption hunds 
For the results in Fig. 5(a) the spectral absorption 

coefficient has two values : in the small v range (vJc,,T,, 
< l/4000). u,,,D = 10, while in the large v range 
(v,/cJ~, > l/4000), a,.,.D = 0.1. The selected value of 
the cutoff frequency v, divides the blackbody spectrum 
at T,,, into approximately two equal parts. A gray 
scattering component is present so that for the two 
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FIG. 5. Comparisons of two-flux and hybrid results with 
exact numerical solutions of radiative transfer equations for 
two-band spectral calculations with scattering and a refrac- 
tive index of n = 2; & = 1, & = 0.25“, t,, = 1, tg2 = 0.25, 
H, = H2 = 1, N = 0.1, v,/c,T,, = l/4000. (a) Band absorp- 
tion thicknesses : a,,D = 10, avLD = 0.1. (b) Band absorption 

thicknesses : qsD = 100, qLD = 1, 

The two-flux method provides excellent agreement of 

t(X) and &, with the exact numerical solution of 
the transfer equations from ref. [3]. Results from the 

hybrid method are also shown and they provide very 
good agreement. For a large K,, in one band the hybrid 
method provides more rapid convergence than the 
two-flux method. 

Spectral d@iision results for single or multiple layers 
Temperature distributions are shown in Fig. 6 for 

a layer with refractive index n = 2 and three spectral 
band9 within which the optical thicknesses are 5, 10, 
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FIG. 6. Comparison of spectral diffusion method predictions 
with temperature profiles from exact numerical solution of 
the radiative transfer equations for a layer with three spectral 
bands without scattering and with an albedo of 0.9 ; cj:, = 1, 
c$> = 0.25“, t,, = 1, f,> = 0.25, H, = Hz = 1, N = 0.1. 
Optical thicknesses in the three bands in order of increasing 
frequency are ~~~ = 5, 10, 20, and the two cutoff frequencies 

are given by v,/c~T,, = l/5300, l/3300. 

and 20 in order of increasing frequency. The two 

cutoff frequencies (given in the caption) divide black- 
body radiation at Tg, into approximately three equal 
parts. Two exact numerical solutions are given: the 

solid line is without scattering (Q = 0) while the long 
dash line is for CI = 0.9. The diffusion approximation 

is independent of the amount of scattering and hence 
only one diffusion curve is given (short dashed line). 
The diffusion curve is close to the other curves but 

does not follow their exact shape near the boundaries. 
This is expected as the diffusion approximation (based 
on an isotropic assumption) does not apply adjacent 
to a boundary because the flux in this region is not 
isotropic. The diffusion method predicts the heat 
transfer through the layer within 10%. 

The diffusion method provides a very good pre- 

diction of the temperature distribution in a three layer 
region as shown in Fig. 7. The exact numerical solu- 
tion was obtained by extending the computer program 
from ref. [4]. Each layer has three spectral bands 
defined in the caption. The diffusion results are con- 
siderably easier to compute than the numerical solu- 
tion of the radiative transfer equations for three 
coupled layers and three absorption bands. The 

opaque limit for conduction (no radiation) within the 
layers, and with emission, absorption, and convection 
at the outer boundaries is shown as a dotdash line. 
This shows that there is a substantial internal radi- 
ation effect although the combined optical thicknesses 
through the three layers is moderately large. A good 
prediction (within 4%) is obtained for the heat trans- 
fer through the composite. 
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FIG. 7. Comparison of spectral diffusion method predictions 
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of the radiative transfer equations for a three-layer composite 
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FIG. 8. Comparison of hybrid two-flux/diffusion method 
with the exact numerical solution for a layer with one opt- 
ically thin spectral band (ho,_ = 1). and one optically thick 
band (tins = 100); 4:, = 1, Qpz = 0.25“, t,, = 1, t,, = 0.25, 
H, = H? = 1. N = 0. I. The cutoff frequency is given by 

v,,ic,r,, = I/4000. 

Results using hybrid method for spectral culcubtion 

with one band optically thick 

The two-flux solution computed by iteration had 
more rapid convergence when the diffusion method 
was used in the optically thick band rather than the 
two-flux method. Results from the hybrid method for 
a two-band calculation are in Fig. 8 for refractive 
indices of n = 1 and 2. The boundary temperatures 

are predicted quite well and the hybrid curves deviate 
only moderately from the exact solutions within the 

layer in the regions where the curvature is largest. 
Good predictions are obtained for the heat transfer 
&,,, through the layer. 

CONCLUSIONS 

The prediction of temperature distributions and 

heat transfer is carried out in semitransparent layers 
heated on both sides by radiation and convection so 
that the boundary temperatures are not specified and 
must be determined in the solution. The layers have 
refractive indices larger than one, and isotropic scat- 
tering is included. Three methods were developed for 

performing spectral calculations. The two-flux 
method was found to give excellent agreement with 

exact numerical solutions for all the conditions con- 
sidered. The diffusion method was developed for spec- 
tral calculations in multilayered media and was found 
to give good predictions for large optical thicknesses. 
The diffusion results are much easer to evaluate than 
a numerical solution of the radiative transfer equa- 
tions for a multilayered region with several spectral 

bands. A hybrid method was developed that can be 
applied when there are optically thin and optically 
thick spectral bands. This gave good temperature and 
heat flux predictions, and was easier to evaluate than 
the two-flux method when a spectral band is optically 
thick. 
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